Create  Edit  Diff  FrontPage  Index  Search  Changes  History  RSS  Source  Login

CommandsForSymbol

MathMLライブラリが対応しているLaTeXの数式モードにおける記号コマンドの一覧です。

\\{ $$\{_{sub}^{sup}$$ \\} $$\}_{sub}^{sup}$$ \# $$\#_{sub}^{sup}$$ \$ $$\$_{sub}^{sup}$$ \& $$\&_{sub}^{sup}$$
\_ $$\__{sub}^{sup}$$ \% $$\%_{sub}^{sup}$$ \, $$\,_{sub}^{sup}$$ \varepsilon $$\varepsilon_{sub}^{sup}$$ \mathdollar $$\mathdollar_{sub}^{sup}$$
\lbrace $$\lbrace_{sub}^{sup}$$ \rbrace $$\rbrace_{sub}^{sup}$$ \P $$\P_{sub}^{sup}$$ \mathparagraph $$\mathparagraph_{sub}^{sup}$$ \S $$\S_{sub}^{sup}$$
\mathsection $$\mathsection_{sub}^{sup}$$ \dag $$\dag_{sub}^{sup}$$ \dagger $$\dagger_{sub}^{sup}$$ \ddag $$\ddag_{sub}^{sup}$$ \ddagger $$\ddagger_{sub}^{sup}$$
\copyright $$\copyright_{sub}^{sup}$$ \pounds $$\pounds_{sub}^{sup}$$ \mathsterling $$\mathsterling_{sub}^{sup}$$ \dots $$\dots_{sub}^{sup}$$ \mathellipsis $$\mathellipsis_{sub}^{sup}$$
\ldots $$\ldots_{sub}^{sup}$$ \ensuremath $$\ensuremath_{sub}^{sup}$$ \| $$\|_{sub}^{sup}$$ \mho $$\mho_{sub}^{sup}$$ \Join $$\Join_{sub}^{sup}$$
\Box $$\Box_{sub}^{sup}$$ \Diamond $$\Diamond_{sub}^{sup}$$ \leadsto $$\leadsto_{sub}^{sup}$$ \sqsubset $$\sqsubset_{sub}^{sup}$$ \sqsupset $$\sqsupset_{sub}^{sup}$$
\lhd $$\lhd_{sub}^{sup}$$ \unlhd $$\unlhd_{sub}^{sup}$$ \rhd $$\rhd_{sub}^{sup}$$ \unrhd $$\unrhd_{sub}^{sup}$$ \log $$\log_{sub}^{sup}$$
\lg $$\lg_{sub}^{sup}$$ \ln $$\ln_{sub}^{sup}$$ \lim $$\lim_{under}^{over}$$ \limsup $$\limsup_{under}^{over}$$ \liminf $$\liminf_{under}^{over}$$
\sin $$\sin_{sub}^{sup}$$ \arcsin $$\arcsin_{sub}^{sup}$$ \sinh $$\sinh_{sub}^{sup}$$ \cos $$\cos_{sub}^{sup}$$ \arccos $$\arccos_{sub}^{sup}$$
\cosh $$\cosh_{sub}^{sup}$$ \tan $$\tan_{sub}^{sup}$$ \arctan $$\arctan_{sub}^{sup}$$ \tanh $$\tanh_{sub}^{sup}$$ \cot $$\cot_{sub}^{sup}$$
\coth $$\coth_{sub}^{sup}$$ \sec $$\sec_{sub}^{sup}$$ \csc $$\csc_{sub}^{sup}$$ \max $$\max_{under}^{over}$$ \min $$\min_{under}^{over}$$
\sup $$\sup_{under}^{over}$$ \inf $$\inf_{under}^{over}$$ \arg $$\arg_{sub}^{sup}$$ \ker $$\ker_{sub}^{sup}$$ \dim $$\dim_{sub}^{sup}$$
\hom $$\hom_{sub}^{sup}$$ \det $$\det_{under}^{over}$$ \exp $$\exp_{sub}^{sup}$$ \Pr $$\Pr_{under}^{over}$$ \gcd $$\gcd_{under}^{over}$$
\deg $$\deg_{sub}^{sup}$$ \prime $$\prime_{sub}^{sup}$$ \alpha $$\alpha_{sub}^{sup}$$ \beta $$\beta_{sub}^{sup}$$ \gamma $$\gamma_{sub}^{sup}$$
\delta $$\delta_{sub}^{sup}$$ \epsilon $$\epsilon_{sub}^{sup}$$ \zeta $$\zeta_{sub}^{sup}$$ \eta $$\eta_{sub}^{sup}$$ \theta $$\theta_{sub}^{sup}$$
\iota $$\iota_{sub}^{sup}$$ \kappa $$\kappa_{sub}^{sup}$$ \lambda $$\lambda_{sub}^{sup}$$ \mu $$\mu_{sub}^{sup}$$ \nu $$\nu_{sub}^{sup}$$
\xi $$\xi_{sub}^{sup}$$ \pi $$\pi_{sub}^{sup}$$ \rho $$\rho_{sub}^{sup}$$ \sigma $$\sigma_{sub}^{sup}$$ \tau $$\tau_{sub}^{sup}$$
\upsilon $$\upsilon_{sub}^{sup}$$ \phi $$\phi_{sub}^{sup}$$ \chi $$\chi_{sub}^{sup}$$ \psi $$\psi_{sub}^{sup}$$ \omega $$\omega_{sub}^{sup}$$
\vartheta $$\vartheta_{sub}^{sup}$$ \varpi $$\varpi_{sub}^{sup}$$ \varrho $$\varrho_{sub}^{sup}$$ \varsigma $$\varsigma_{sub}^{sup}$$ \varphi $$\varphi_{sub}^{sup}$$
\Gamma $$\Gamma_{sub}^{sup}$$ \Delta $$\Delta_{sub}^{sup}$$ \Theta $$\Theta_{sub}^{sup}$$ \Lambda $$\Lambda_{sub}^{sup}$$ \Xi $$\Xi_{sub}^{sup}$$
\Pi $$\Pi_{sub}^{sup}$$ \Sigma $$\Sigma_{sub}^{sup}$$ \Upsilon $$\Upsilon_{sub}^{sup}$$ \Phi $$\Phi_{sub}^{sup}$$ \Psi $$\Psi_{sub}^{sup}$$
\Omega $$\Omega_{sub}^{sup}$$ \aleph $$\aleph_{sub}^{sup}$$ \hbar $$\hbar_{sub}^{sup}$$ \imath $$\imath_{sub}^{sup}$$ \jmath $$\jmath_{sub}^{sup}$$
\ell $$\ell_{sub}^{sup}$$ \wp $$\wp_{sub}^{sup}$$ \Re $$\Re_{sub}^{sup}$$ \Im $$\Im_{sub}^{sup}$$ \partial $$\partial_{sub}^{sup}$$
\infty $$\infty_{sub}^{sup}$$ \emptyset $$\emptyset_{sub}^{sup}$$ \nabla $$\nabla_{sub}^{sup}$$ \surd $$\surd_{sub}^{sup}$$ \top $$\top_{sub}^{sup}$$
\bot $$\bot_{sub}^{sup}$$ \angle $$\angle_{sub}^{sup}$$ \not $$\not_{sub}^{sup}$$ \triangle $$\triangle_{sub}^{sup}$$ \forall $$\forall_{sub}^{sup}$$
\exists $$\exists_{sub}^{sup}$$ \neg $$\neg_{sub}^{sup}$$ \lnot $$\lnot_{sub}^{sup}$$ \flat $$\flat_{sub}^{sup}$$ \natural $$\natural_{sub}^{sup}$$
\sharp $$\sharp_{sub}^{sup}$$ \clubsuit $$\clubsuit_{sub}^{sup}$$ \diamondsuit $$\diamondsuit_{sub}^{sup}$$ \heartsuit $$\heartsuit_{sub}^{sup}$$ \spadesuit $$\spadesuit_{sub}^{sup}$$
\coprod $$\coprod_{under}^{over}$$ \bigvee $$\bigvee_{under}^{over}$$ \bigwedge $$\bigwedge_{under}^{over}$$ \biguplus $$\biguplus_{under}^{over}$$ \bigcap $$\bigcap_{under}^{over}$$
\bigcup $$\bigcup_{under}^{over}$$ \intop $$\intop_{under}^{over}$$ \int $$\int_{sub}^{sup}$$ \prod $$\prod_{under}^{over}$$ \sum $$\sum_{under}^{over}$$
\bigotimes $$\bigotimes_{under}^{over}$$ \bigoplus $$\bigoplus_{under}^{over}$$ \bigodot $$\bigodot_{under}^{over}$$ \ointop $$\ointop_{under}^{over}$$ \oint $$\oint_{sub}^{sup}$$
\bigsqcup $$\bigsqcup_{under}^{over}$$ \smallint $$\smallint_{under}^{over}$$ \triangleleft $$\triangleleft_{sub}^{sup}$$ \triangleright $$\triangleright_{sub}^{sup}$$ \bigtriangleup $$\bigtriangleup_{sub}^{sup}$$
\bigtriangledown $$\bigtriangledown_{sub}^{sup}$$ \wedge $$\wedge_{sub}^{sup}$$ \land $$\land_{sub}^{sup}$$ \vee $$\vee_{sub}^{sup}$$ \lor $$\lor_{sub}^{sup}$$
\cap $$\cap_{sub}^{sup}$$ \cup $$\cup_{sub}^{sup}$$ \sqcap $$\sqcap_{sub}^{sup}$$ \sqcup $$\sqcup_{sub}^{sup}$$ \uplus $$\uplus_{sub}^{sup}$$
\amalg $$\amalg_{sub}^{sup}$$ \diamond $$\diamond_{sub}^{sup}$$ \bullet $$\bullet_{sub}^{sup}$$ \wr $$\wr_{sub}^{sup}$$ \div $$\div_{sub}^{sup}$$
\odot $$\odot_{sub}^{sup}$$ \oslash $$\oslash_{sub}^{sup}$$ \otimes $$\otimes_{sub}^{sup}$$ \ominus $$\ominus_{sub}^{sup}$$ \oplus $$\oplus_{sub}^{sup}$$
\mp $$\mp_{sub}^{sup}$$ \pm $$\pm_{sub}^{sup}$$ \circ $$\circ_{sub}^{sup}$$ \bigcirc $$\bigcirc_{sub}^{sup}$$ \setminus $$\setminus_{sub}^{sup}$$
\cdot $$\cdot_{sub}^{sup}$$ \ast $$\ast_{sub}^{sup}$$ \times $$\times_{sub}^{sup}$$ \star $$\star_{sub}^{sup}$$ \propto $$\propto_{sub}^{sup}$$
\sqsubseteq $$\sqsubseteq_{sub}^{sup}$$ \sqsupseteq $$\sqsupseteq_{sub}^{sup}$$ \parallel $$\parallel_{sub}^{sup}$$ \mid $$\mid_{sub}^{sup}$$ \dashv $$\dashv_{sub}^{sup}$$
\vdash $$\vdash_{sub}^{sup}$$ \nearrow $$\nearrow_{sub}^{sup}$$ \searrow $$\searrow_{sub}^{sup}$$ \nwarrow $$\nwarrow_{sub}^{sup}$$ \swarrow $$\swarrow_{sub}^{sup}$$
\Leftrightarrow $$\Leftrightarrow_{sub}^{sup}$$ \Leftarrow $$\Leftarrow_{sub}^{sup}$$ \Rightarrow $$\Rightarrow_{sub}^{sup}$$ \neq $$\neq_{sub}^{sup}$$ \ne $$\ne_{sub}^{sup}$$
\leq $$\leq_{sub}^{sup}$$ \le $$\le_{sub}^{sup}$$ \geq $$\geq_{sub}^{sup}$$ \ge $$\ge_{sub}^{sup}$$ \succ $$\succ_{sub}^{sup}$$
\prec $$\prec_{sub}^{sup}$$ \approx $$\approx_{sub}^{sup}$$ \succeq $$\succeq_{sub}^{sup}$$ \preceq $$\preceq_{sub}^{sup}$$ \supset $$\supset_{sub}^{sup}$$
\subset $$\subset_{sub}^{sup}$$ \supseteq $$\supseteq_{sub}^{sup}$$ \subseteq $$\subseteq_{sub}^{sup}$$ \in $$\in_{sub}^{sup}$$ \ni $$\ni_{sub}^{sup}$$
\owns $$\owns_{sub}^{sup}$$ \gg $$\gg_{sub}^{sup}$$ \ll $$\ll_{sub}^{sup}$$ \leftrightarrow $$\leftrightarrow_{sub}^{sup}$$ \leftarrow $$\leftarrow_{sub}^{sup}$$
\gets $$\gets_{sub}^{sup}$$ \rightarrow $$\rightarrow_{sub}^{sup}$$ \to $$\to_{sub}^{sup}$$ \mapstochar $$\mapstochar_{sub}^{sup}$$ \mapsto $$\mapsto_{sub}^{sup}$$
\sim $$\sim_{sub}^{sup}$$ \simeq $$\simeq_{sub}^{sup}$$ \perp $$\perp_{sub}^{sup}$$ \equiv $$\equiv_{sub}^{sup}$$ \asymp $$\asymp_{sub}^{sup}$$
\smile $$\smile_{sub}^{sup}$$ \frown $$\frown_{sub}^{sup}$$ \leftharpoonup $$\leftharpoonup_{sub}^{sup}$$ \leftharpoondown $$\leftharpoondown_{sub}^{sup}$$ \rightharpoonup $$\rightharpoonup_{sub}^{sup}$$
\rightharpoondown $$\rightharpoondown_{sub}^{sup}$$ \cong $$\cong_{sub}^{sup}$$ \notin $$\notin_{sub}^{sup}$$ \rightleftharpoons $$\rightleftharpoons_{sub}^{sup}$$ \doteq $$\doteq_{sub}^{sup}$$
\joinrel $$\joinrel_{sub}^{sup}$$ \relbar $$\relbar_{sub}^{sup}$$ \Relbar $$\Relbar_{sub}^{sup}$$ \lhook $$\lhook_{sub}^{sup}$$ \hookrightarrow $$\hookrightarrow_{sub}^{sup}$$
\rhook $$\rhook_{sub}^{sup}$$ \hookleftarrow $$\hookleftarrow_{sub}^{sup}$$ \bowtie $$\bowtie_{sub}^{sup}$$ \models $$\models_{sub}^{sup}$$ \Longrightarrow $$\Longrightarrow_{sub}^{sup}$$
\longrightarrow $$\longrightarrow_{sub}^{sup}$$ \longleftarrow $$\longleftarrow_{sub}^{sup}$$ \Longleftarrow $$\Longleftarrow_{sub}^{sup}$$ \longmapsto $$\longmapsto_{sub}^{sup}$$ \longleftrightarrow $$\longleftrightarrow_{sub}^{sup}$$
\Longleftrightarrow $$\Longleftrightarrow_{sub}^{sup}$$ \iff $$\iff_{sub}^{sup}$$ \ldotp $$\ldotp_{sub}^{sup}$$ \cdotp $$\cdotp_{sub}^{sup}$$ \colon $$\colon_{sub}^{sup}$$
\cdots $$\cdots_{sub}^{sup}$$ \vdots $$\vdots_{sub}^{sup}$$ \ddots $$\ddots_{sub}^{sup}$$ \braceld $$\braceld_{sub}^{sup}$$ \bracerd $$\bracerd_{sub}^{sup}$$
\bracelu $$\bracelu_{sub}^{sup}$$ \braceru $$\braceru_{sub}^{sup}$$ \lmoustache $$\lmoustache_{sub}^{sup}$$ \rmoustache $$\rmoustache_{sub}^{sup}$$ \arrowvert $$\arrowvert_{sub}^{sup}$$
\Arrowvert $$\Arrowvert_{sub}^{sup}$$ \Vert $$\Vert_{sub}^{sup}$$ \vert $$\vert_{sub}^{sup}$$ \uparrow $$\uparrow_{sub}^{sup}$$ \downarrow $$\downarrow_{sub}^{sup}$$
\updownarrow $$\updownarrow_{sub}^{sup}$$ \Uparrow $$\Uparrow_{sub}^{sup}$$ \Downarrow $$\Downarrow_{sub}^{sup}$$ \Updownarrow $$\Updownarrow_{sub}^{sup}$$ \backslash $$\backslash_{sub}^{sup}$$
\rangle $$\rangle_{sub}^{sup}$$ \langle $$\langle_{sub}^{sup}$$ \rceil $$\rceil_{sub}^{sup}$$ \lceil $$\lceil_{sub}^{sup}$$ \rfloor $$\rfloor_{sub}^{sup}$$
\lfloor $$\lfloor_{sub}^{sup}$$ \lgroup $$\lgroup_{sub}^{sup}$$ \rgroup $$\rgroup_{sub}^{sup}$$ \bracevert $$\bracevert_{sub}^{sup}$$ \mathunderscore $$\mathunderscore_{sub}^{sup}$$
\square $$\square_{sub}^{sup}$$ \rightsquigarrow $$\rightsquigarrow_{sub}^{sup}$$ \lozenge $$\lozenge_{sub}^{sup}$$ \vartriangleright $$\vartriangleright_{sub}^{sup}$$ \vartriangleleft $$\vartriangleleft_{sub}^{sup}$$
\trianglerighteq $$\trianglerighteq_{sub}^{sup}$$ \trianglelefteq $$\trianglelefteq_{sub}^{sup}$$ \boxdot $$\boxdot_{sub}^{sup}$$ \boxplus $$\boxplus_{sub}^{sup}$$ \boxtimes $$\boxtimes_{sub}^{sup}$$
\blacksquare $$\blacksquare_{sub}^{sup}$$ \centerdot $$\centerdot_{sub}^{sup}$$ \blacklozenge $$\blacklozenge_{sub}^{sup}$$ \circlearrowright $$\circlearrowright_{sub}^{sup}$$ \circlearrowleft $$\circlearrowleft_{sub}^{sup}$$
\leftrightharpoons $$\leftrightharpoons_{sub}^{sup}$$ \boxminus $$\boxminus_{sub}^{sup}$$ \Vdash $$\Vdash_{sub}^{sup}$$ \Vvdash $$\Vvdash_{sub}^{sup}$$ \vDash $$\vDash_{sub}^{sup}$$
\twoheadrightarrow $$\twoheadrightarrow_{sub}^{sup}$$ \twoheadleftarrow $$\twoheadleftarrow_{sub}^{sup}$$ \leftleftarrows $$\leftleftarrows_{sub}^{sup}$$ \rightrightarrows $$\rightrightarrows_{sub}^{sup}$$ \upuparrows $$\upuparrows_{sub}^{sup}$$
\downdownarrows $$\downdownarrows_{sub}^{sup}$$ \upharpoonright $$\upharpoonright_{sub}^{sup}$$ \restriction $$\restriction_{sub}^{sup}$$ \downharpoonright $$\downharpoonright_{sub}^{sup}$$ \upharpoonleft $$\upharpoonleft_{sub}^{sup}$$
\downharpoonleft $$\downharpoonleft_{sub}^{sup}$$ \rightarrowtail $$\rightarrowtail_{sub}^{sup}$$ \leftarrowtail $$\leftarrowtail_{sub}^{sup}$$ \leftrightarrows $$\leftrightarrows_{sub}^{sup}$$ \rightleftarrows $$\rightleftarrows_{sub}^{sup}$$
\Lsh $$\Lsh_{sub}^{sup}$$ \Rsh $$\Rsh_{sub}^{sup}$$ \leftrightsquigarrow $$\leftrightsquigarrow_{sub}^{sup}$$ \looparrowleft $$\looparrowleft_{sub}^{sup}$$ \looparrowright $$\looparrowright_{sub}^{sup}$$
\circeq $$\circeq_{sub}^{sup}$$ \succsim $$\succsim_{sub}^{sup}$$ \gtrsim $$\gtrsim_{sub}^{sup}$$ \gtrapprox $$\gtrapprox_{sub}^{sup}$$ \multimap $$\multimap_{sub}^{sup}$$
\therefore $$\therefore_{sub}^{sup}$$ \because $$\because_{sub}^{sup}$$ \doteqdot $$\doteqdot_{sub}^{sup}$$ \Doteq $$\Doteq_{sub}^{sup}$$ \triangleq $$\triangleq_{sub}^{sup}$$
\precsim $$\precsim_{sub}^{sup}$$ \lesssim $$\lesssim_{sub}^{sup}$$ \lessapprox $$\lessapprox_{sub}^{sup}$$ \eqslantless $$\eqslantless_{sub}^{sup}$$ \eqslantgtr $$\eqslantgtr_{sub}^{sup}$$
\curlyeqprec $$\curlyeqprec_{sub}^{sup}$$ \curlyeqsucc $$\curlyeqsucc_{sub}^{sup}$$ \preccurlyeq $$\preccurlyeq_{sub}^{sup}$$ \leqq $$\leqq_{sub}^{sup}$$ \leqslant $$\leqslant_{sub}^{sup}$$
\lessgtr $$\lessgtr_{sub}^{sup}$$ \backprime $$\backprime_{sub}^{sup}$$ \risingdotseq $$\risingdotseq_{sub}^{sup}$$ \fallingdotseq $$\fallingdotseq_{sub}^{sup}$$ \succcurlyeq $$\succcurlyeq_{sub}^{sup}$$
\geqq $$\geqq_{sub}^{sup}$$ \geqslant $$\geqslant_{sub}^{sup}$$ \gtrless $$\gtrless_{sub}^{sup}$$ \bigstar $$\bigstar_{sub}^{sup}$$ \between $$\between_{sub}^{sup}$$
\blacktriangledown $$\blacktriangledown_{sub}^{sup}$$ \blacktriangleright $$\blacktriangleright_{sub}^{sup}$$ \blacktriangleleft $$\blacktriangleleft_{sub}^{sup}$$ \vartriangle $$\vartriangle_{sub}^{sup}$$ \blacktriangle $$\blacktriangle_{sub}^{sup}$$
\triangledown $$\triangledown_{sub}^{sup}$$ \eqcirc $$\eqcirc_{sub}^{sup}$$ \lesseqgtr $$\lesseqgtr_{sub}^{sup}$$ \gtreqless $$\gtreqless_{sub}^{sup}$$ \lesseqqgtr $$\lesseqqgtr_{sub}^{sup}$$
\gtreqqless $$\gtreqqless_{sub}^{sup}$$ \Rrightarrow $$\Rrightarrow_{sub}^{sup}$$ \Lleftarrow $$\Lleftarrow_{sub}^{sup}$$ \veebar $$\veebar_{sub}^{sup}$$ \barwedge $$\barwedge_{sub}^{sup}$$
\doublebarwedge $$\doublebarwedge_{sub}^{sup}$$ \measuredangle $$\measuredangle_{sub}^{sup}$$ \sphericalangle $$\sphericalangle_{sub}^{sup}$$ \varpropto $$\varpropto_{sub}^{sup}$$ \smallsmile $$\smallsmile_{sub}^{sup}$$
\smallfrown $$\smallfrown_{sub}^{sup}$$ \Subset $$\Subset_{sub}^{sup}$$ \Supset $$\Supset_{sub}^{sup}$$ \Cup $$\Cup_{sub}^{sup}$$ \doublecup $$\doublecup_{sub}^{sup}$$
\Cap $$\Cap_{sub}^{sup}$$ \doublecap $$\doublecap_{sub}^{sup}$$ \curlywedge $$\curlywedge_{sub}^{sup}$$ \curlyvee $$\curlyvee_{sub}^{sup}$$ \leftthreetimes $$\leftthreetimes_{sub}^{sup}$$
\rightthreetimes $$\rightthreetimes_{sub}^{sup}$$ \subseteqq $$\subseteqq_{sub}^{sup}$$ \supseteqq $$\supseteqq_{sub}^{sup}$$ \bumpeq $$\bumpeq_{sub}^{sup}$$ \Bumpeq $$\Bumpeq_{sub}^{sup}$$
\lll $$\lll_{sub}^{sup}$$ \llless $$\llless_{sub}^{sup}$$ \ggg $$\ggg_{sub}^{sup}$$ \gggtr $$\gggtr_{sub}^{sup}$$ \circledS $$\circledS_{sub}^{sup}$$
\pitchfork $$\pitchfork_{sub}^{sup}$$ \dotplus $$\dotplus_{sub}^{sup}$$ \backsim $$\backsim_{sub}^{sup}$$ \backsimeq $$\backsimeq_{sub}^{sup}$$ \complement $$\complement_{sub}^{sup}$$
\intercal $$\intercal_{sub}^{sup}$$ \circledcirc $$\circledcirc_{sub}^{sup}$$ \circledast $$\circledast_{sub}^{sup}$$ \circleddash $$\circleddash_{sub}^{sup}$$ \lvertneqq $$\lvertneqq_{sub}^{sup}$$
\gvertneqq $$\gvertneqq_{sub}^{sup}$$ \nleq $$\nleq_{sub}^{sup}$$ \ngeq $$\ngeq_{sub}^{sup}$$ \nless $$\nless_{sub}^{sup}$$ \ngtr $$\ngtr_{sub}^{sup}$$
\nprec $$\nprec_{sub}^{sup}$$ \nsucc $$\nsucc_{sub}^{sup}$$ \lneqq $$\lneqq_{sub}^{sup}$$ \gneqq $$\gneqq_{sub}^{sup}$$ \nleqslant $$\nleqslant_{sub}^{sup}$$
\ngeqslant $$\ngeqslant_{sub}^{sup}$$ \lneq $$\lneq_{sub}^{sup}$$ \gneq $$\gneq_{sub}^{sup}$$ \npreceq $$\npreceq_{sub}^{sup}$$ \nsucceq $$\nsucceq_{sub}^{sup}$$
\precnsim $$\precnsim_{sub}^{sup}$$ \succnsim $$\succnsim_{sub}^{sup}$$ \lnsim $$\lnsim_{sub}^{sup}$$ \gnsim $$\gnsim_{sub}^{sup}$$ \nleqq $$\nleqq_{sub}^{sup}$$
\ngeqq $$\ngeqq_{sub}^{sup}$$ \precneqq $$\precneqq_{sub}^{sup}$$ \succneqq $$\succneqq_{sub}^{sup}$$ \precnapprox $$\precnapprox_{sub}^{sup}$$ \succnapprox $$\succnapprox_{sub}^{sup}$$
\lnapprox $$\lnapprox_{sub}^{sup}$$ \gnapprox $$\gnapprox_{sub}^{sup}$$ \nsim $$\nsim_{sub}^{sup}$$ \ncong $$\ncong_{sub}^{sup}$$ \diagup $$\diagup_{sub}^{sup}$$
\diagdown $$\diagdown_{sub}^{sup}$$ \varsubsetneq $$\varsubsetneq_{sub}^{sup}$$ \varsupsetneq $$\varsupsetneq_{sub}^{sup}$$ \nsubseteqq $$\nsubseteqq_{sub}^{sup}$$ \nsupseteqq $$\nsupseteqq_{sub}^{sup}$$
\subsetneqq $$\subsetneqq_{sub}^{sup}$$ \supsetneqq $$\supsetneqq_{sub}^{sup}$$ \varsubsetneqq $$\varsubsetneqq_{sub}^{sup}$$ \varsupsetneqq $$\varsupsetneqq_{sub}^{sup}$$ \subsetneq $$\subsetneq_{sub}^{sup}$$
\supsetneq $$\supsetneq_{sub}^{sup}$$ \nsubseteq $$\nsubseteq_{sub}^{sup}$$ \nsupseteq $$\nsupseteq_{sub}^{sup}$$ \nparallel $$\nparallel_{sub}^{sup}$$ \nmid $$\nmid_{sub}^{sup}$$
\nshortmid $$\nshortmid_{sub}^{sup}$$ \nshortparallel $$\nshortparallel_{sub}^{sup}$$ \nvdash $$\nvdash_{sub}^{sup}$$ \nVdash $$\nVdash_{sub}^{sup}$$ \nvDash $$\nvDash_{sub}^{sup}$$
\nVDash $$\nVDash_{sub}^{sup}$$ \ntrianglerighteq $$\ntrianglerighteq_{sub}^{sup}$$ \ntrianglelefteq $$\ntrianglelefteq_{sub}^{sup}$$ \ntriangleleft $$\ntriangleleft_{sub}^{sup}$$ \ntriangleright $$\ntriangleright_{sub}^{sup}$$
\nleftarrow $$\nleftarrow_{sub}^{sup}$$ \nrightarrow $$\nrightarrow_{sub}^{sup}$$ \nLeftarrow $$\nLeftarrow_{sub}^{sup}$$ \nRightarrow $$\nRightarrow_{sub}^{sup}$$ \nLeftrightarrow $$\nLeftrightarrow_{sub}^{sup}$$
\nleftrightarrow $$\nleftrightarrow_{sub}^{sup}$$ \divideontimes $$\divideontimes_{sub}^{sup}$$ \varnothing $$\varnothing_{sub}^{sup}$$ \nexists $$\nexists_{sub}^{sup}$$ \Finv $$\Finv_{sub}^{sup}$$
\Game $$\Game_{sub}^{sup}$$ \eth $$\eth_{sub}^{sup}$$ \eqsim $$\eqsim_{sub}^{sup}$$ \beth $$\beth_{sub}^{sup}$$ \gimel $$\gimel_{sub}^{sup}$$
\daleth $$\daleth_{sub}^{sup}$$ \lessdot $$\lessdot_{sub}^{sup}$$ \gtrdot $$\gtrdot_{sub}^{sup}$$ \ltimes $$\ltimes_{sub}^{sup}$$ \rtimes $$\rtimes_{sub}^{sup}$$
\shortmid $$\shortmid_{sub}^{sup}$$ \shortparallel $$\shortparallel_{sub}^{sup}$$ \smallsetminus $$\smallsetminus_{sub}^{sup}$$ \thicksim $$\thicksim_{sub}^{sup}$$ \thickapprox $$\thickapprox_{sub}^{sup}$$
\approxeq $$\approxeq_{sub}^{sup}$$ \succapprox $$\succapprox_{sub}^{sup}$$ \precapprox $$\precapprox_{sub}^{sup}$$ \curvearrowleft $$\curvearrowleft_{sub}^{sup}$$ \curvearrowright $$\curvearrowright_{sub}^{sup}$$
\digamma $$\digamma_{sub}^{sup}$$ \varkappa $$\varkappa_{sub}^{sup}$$ \Bbbk $$\Bbbk_{sub}^{sup}$$ \hslash $$\hslash_{sub}^{sup}$$ \backepsilon $$\backepsilon_{sub}^{sup}$$
\ulcorner $$\ulcorner_{sub}^{sup}$$ \urcorner $$\urcorner_{sub}^{sup}$$ \llcorner $$\llcorner_{sub}^{sup}$$ \lrcorner $$\lrcorner_{sub}^{sup}$$ $$$$
Last modified:2008/07/11 23:53:42
Keyword(s):
References:[TeX_mathml.rb]